Classification with Strategically Withheld Data

Anilesh K. Krishnaswamy*, Haoming Li⁺, David Rein*, Hanrui Zhang*, Vincent Conitzer*

*Duke University, *University of Southern California

Problem

Strategic Withholding of Feature Values:

- College admission
- Credit approval
- Online dating

In General:

- Agent's type is defined by feature values.
- Agent wants to be accepted, but each type can only (mis)report as certain types.

Problem Statement:

- Assume the principal knows the prior distribution over agents' types.
- How to learn a truthful classifier, knowing that agents can withhold feature values?

Solutions

The Min-Cut Classifier:

The Hill-Climbing Classifier:

- How to train a strategy-proof ensemble?
- Idea: MAX-ensemble: accept the agent if any of the applicable subclassifiers accepts.
- One subclassifier for each combination of features, each iteratively trained on the data rejected by all other subclassifiers.

The Incentive-Compatible Log Reg Classifier:

- What imputed value gives no better signal?
- Idea: Nonnegative feature values +
 nonnegative coefficients
- After each gradient step, project the coefficients to feasible nonnegative region.

Evaluation

Vs. mean/mode imputation & reduced-feature; Tru.: truthful report; Str.: strategic (mis)report; disc.: discretizing the feature values.

Classifier	Australia		Germany		I	Poland	l	Taiwan	
	Tru.	Str.	Tru.	Str.	Tru	Tru. S		Tru.	Str.
$\overline{HC(LR)}$.792	.792	.639	.639	.65	6. 6	59	.648	.648
MINCUT	.770	.770	.580	.580	.50	.5	01	.652	.652
IC-LR	.788	.788	.654	.654	.63	.6	39	.499	.499
ĪMP(LR)	7 96	791	663	$5\overline{80}$	7.7 <u>1</u>	46	60	.670	<u>.618</u>
R-F(LR)	.808	.545	.631	.508	.67	0 .5	11	.665	.590
Classifier		Australia		Germany		Poland		Taiwan	
		Tru.	Str.	Tru.	Str.	Tru.	Str.	Tru.	Str.
HC(LR) w	// disc.	.794	.794	.641	.641	.692	.692	.650	.650
MINCUT W	// disc.	.789	.789	.629	.629	.692	.692	.649	.649
IC-LR w/	disc.	.800	.800	.651	.651	.698	.698	.646	.646
ĪMP(LR) v	$\overline{v}/\overline{disc}$.	$79\overline{9}$	762	.652	5 7 7	.719	6 3 1	. 6 8 6 .	$5\overline{4}1$
R-F(LR) v									